Thursday, November 28, 2019
Genetic Engineering The Frontier Essays - Biology,
Genetic Engineering: The Frontier Genetic Engineering: The Frontier Science is a still somewhat obscure creature that continues to evolve, radically changing the face of mankind perhaps faster than it's creator. The magnificent world of science has witnessed many profound breakthroughs and advances in this past century, but none as noteworthy as genetic engineering. As a subset of the more general subject of biotechnology, genetic engineering is ?the process of altering genetic material by purposeful manipulation of DNA (Wallace 339).? To some, this field illustrates malicious scientists ?playing God,? while to others it is a treasure chest of knowledge that holds the key to solving problems such as world hunger, cancer, and AIDS. ?Scientists have already been able to turn microbes into millions of tiny factories producing drugs, alcohol, and chemicals, and astonishing forecasts are being made for genetic engineering's future contributions to health, pharmaceuticals, and agriculture (Sylvester 2).? By engineering the plants and other organisms that a re the source for medications, possible defects that may occur due to mutations and genetic diseases can be avoided completely. This could not only produce a more effective medicine, but save lives as well. However, risks still remain in using genetic engineering to solve the world's problems. Questions arise concerning ethics, public safety, and misuse by the economically or politically powerful, but how can we as human beings know what is truly to come? Read Aldous Huxley's ,A Brave New World, or perhaps Asimov's, Foundation. Truthfully, there is no telling what the future holds, other than the ability to research and understand more about this incredible science of genetics. It is worth taking the risk to gain more knowledge and try to solve these problems that plague the world than shut it back up in Pandora's Box. As a student, I find biology, specifically genetics, extremely fascinating. What other form of science or technology allows an individual to create an entirely new species of organism that in turn produces insulin to save human lives? It carries a wealth of information, but also a chasm of criticism and doubt. Mendel first experimented with inheritance in the nineteenth century. In the 1950s, Watson and Crick devised the structure of DNA, the double helix. By the 1970s, scientists began splicing and adhering DNA fragments to other DNA fragments in effect creating recombinant DNA. These findings were the essential beginning of modern genetics, bringing forth the building blocks to create entirely new beings to suit human needs. Creating new life forms has been the subject of folklore and science fiction novels for centuries. Mary Shelley's, Frankenstein, of the 19th century, is a exquisite example of science gone haywire, as a monster is constructed much like a patch-work quilt. ?When foreign DNA is transferred by genetic engineering to a microbe, plant or animal, a transgenic organism is the result (Aldridge 113).? Creating new life forms today is certainly not a thing of the past. Through genetic engineering, transgenic organisms are created to improve upon nature, to act as bioreactors that make useful products, or to act as models for understanding basic biology. They may not appear as foreign to this earth, but they do contain at least one altered gene. One may argue that humans have no right to intervene with evolution because of the way it allows the setting aside of species barriers. However, another may argue that humans have been interfering with evolution since the dawn of agriculture, with the d evelopment of plant and animal breeding, while genetic engineering is just a sophisticated way of doing something particularly ancient. There are arguments on each side and still more arising in the areas of animal rights, patenting, and environmental and ecosystem concerns. Sometimes it may take hundreds of transgenic embryos for a single one to succeed. Failure must occur for knowledge to be gained, as a scientist will learn from their mistakes, improve, and probably fail again. Eventually, succession must occur and when it does, the result was worth the mandatory trial and error. The world is not changed at the drop of a hat. All in all, transgenic organisms are designed not to harm nature's delicate balance but to enhance it for the good of it's inhabitants. Molecular biology and the
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.